Features of the Three Dimensional Structure in the Pacific Sub-surface Layer in Summer

Features of the Three Dimensional Structure in the Pacific Sub-surface Layer in Summer


DOI: 

https://doi.org/10.30564/jasr.v3i2.1999

Abstract

The anomaly of the summer sea temperature is analyzed by a spatial-temporal synthetically rotated orthogonal function (REOF) at three different depths (0 m, 40 m, and 120 m) over the area 110°E~100°W and 30°S~60°N. The spatial-temporal distribution shows that the “signal” of annual anomaly is stronger in the sub-surface layer than the surface layer, and it is stronger in the eastern equatorial Pacific than in the western area. The spatial structure of the sea temperature anomaly at different layers is related to both the ocean current and the interaction of ocean and atmosphere. The temporal changing trend of the sub-surface sea temperature in different areas shows that the annual mean sea temperature increases and the annual variability evidently increases from the 1980s, and these keep the same trend with the increasing El Nino phenomenon very well.

Keywords: 

Pacific sea temperature, Spatial structure, Temporal evolution

Comments

Popular posts from this blog

𝐉𝐨𝐮𝐫𝐧𝐚𝐥 𝐨𝐟 𝐀𝐭𝐦𝐨𝐬𝐩𝐡𝐞𝐫𝐢𝐜 𝐒𝐜𝐢𝐞𝐧𝐜𝐞 𝐑𝐞𝐬𝐞𝐚𝐫𝐜𝐡 | 𝐕𝐨𝐥𝐮𝐦𝐞 𝟎𝟔 | 𝐈𝐬𝐬𝐮𝐞 𝟎𝟐 | 𝐀𝐩𝐫𝐢𝐥 𝟐𝟎𝟐𝟑

Impact of Polymer Coating on the Flexural Strength and Deflection Characteristics of Fiber-Reinforced Concrete Beams

𝐉𝐨𝐮𝐫𝐧𝐚𝐥 𝐨𝐟 𝐀𝐭𝐦𝐨𝐬𝐩𝐡𝐞𝐫𝐢𝐜 𝐒𝐜𝐢𝐞𝐧𝐜𝐞 𝐑𝐞𝐬𝐞𝐚𝐫𝐜𝐡 | 𝐕𝐨𝐥𝐮𝐦𝐞 𝟎𝟔 | 𝐈𝐬𝐬𝐮𝐞 𝟎𝟑 | 𝐉𝐮𝐥𝐲 𝟐𝟎𝟐𝟑