Enhancing Human-Machine Interaction: Real-Time Emotion Recognition through Speech Analysis

Enhancing Human-Machine Interaction: Real-Time Emotion Recognition through Speech Analysis


DOI: 

https://doi.org/10.30564/jcsr.v5i3.5768
Received: 7 June 2023 | Revised: 7 July 2023 | Accepted: 10 July 2023 | Published Online: 21 July 2023

Abstract

Humans, as intricate beings driven by a multitude of emotions, possess a remarkable ability to decipher and respond to socio-affective cues. However, many individuals and machines struggle to interpret such nuanced signals, including variations in tone of voice. This paper explores the potential of intelligent technologies to bridge this gap and improve the quality of conversations. In particular, the authors propose a real-time processing method that captures and evaluates emotions in speech, utilizing a terminal device like the Raspberry Pi computer. Furthermore, the authors provide an overview of the current research landscape surrounding speech emotional recognition and delve into our methodology, which involves analyzing audio files from renowned emotional speech databases. To aid incomprehension, the authors present visualizations of these audio files in situ, employing dB-scaled Mel spectrograms generated through TensorFlow and Matplotlib. The authors use a support vector machine kernel and a Convolutional Neural Network with transfer learning to classify emotions. Notably, the classification accuracies achieved are 70% and 77%, respectively, demonstrating the efficacy of our approach when executed on an edge device rather than relying on a server. The system can evaluate pure emotion in speech and provide corresponding visualizations to depict the speaker’s emotional state in less than one second on a Raspberry Pi. These findings pave the way for more effective and emotionally intelligent human-machine interactions in various domains.

Keywords: 

Speech emotion recognition, Edge computing, Real-time computing, Raspberry Pi

Comments

Popular posts from this blog

𝐉𝐨𝐮𝐫𝐧𝐚𝐥 𝐨𝐟 𝐀𝐭𝐦𝐨𝐬𝐩𝐡𝐞𝐫𝐢𝐜 𝐒𝐜𝐢𝐞𝐧𝐜𝐞 𝐑𝐞𝐬𝐞𝐚𝐫𝐜𝐡 | 𝐕𝐨𝐥𝐮𝐦𝐞 𝟎𝟔 | 𝐈𝐬𝐬𝐮𝐞 𝟎𝟐 | 𝐀𝐩𝐫𝐢𝐥 𝟐𝟎𝟐𝟑

Impact of Polymer Coating on the Flexural Strength and Deflection Characteristics of Fiber-Reinforced Concrete Beams

𝐉𝐨𝐮𝐫𝐧𝐚𝐥 𝐨𝐟 𝐀𝐭𝐦𝐨𝐬𝐩𝐡𝐞𝐫𝐢𝐜 𝐒𝐜𝐢𝐞𝐧𝐜𝐞 𝐑𝐞𝐬𝐞𝐚𝐫𝐜𝐡 | 𝐕𝐨𝐥𝐮𝐦𝐞 𝟎𝟔 | 𝐈𝐬𝐬𝐮𝐞 𝟎𝟑 | 𝐉𝐮𝐥𝐲 𝟐𝟎𝟐𝟑