SGT: Session-based Recommendation with GRU and Transformer

SGT: Session-based Recommendation with GRU and Transformer

DOI: 

https://doi.org/10.30564/jcsr.v5i2.5610
Received: 30 March 2023 | Revised: 5 April 2023 | Accepted: 11 April 2023 | Published Online: 20 April 2023

Abstract

Session-based recommendation aims to predict user preferences based on anonymous behavior sequences. Recent research on session-based recommendation systems has mainly focused on utilizing attention mechanisms on sequential patterns, which has achieved significant results. However, most existing studies only consider individual items in a session and do not extract information from continuous items, which can easily lead to the loss of information on item transition relationships. Therefore, this paper proposes a session-based recommendation algorithm (SGT) based on Gated Recurrent Unit (GRU) and Transformer, which captures user interests by learning continuous items in the current session and utilizes all item transitions on sessions in a more refined way. By combining short-term sessions and long-term behavior, user dynamic preferences are captured. Extensive experiments were conducted on three session-based recommendation datasets, and compared to the baseline methods, both the recall rate Recall@20 and the mean reciprocal rank MRR@20 of the SGT algorithm were improved, demonstrating the effectiveness of the SGT method.

Keywords: 

Recommender system, Gated recurrent unit, Transformer, Session-based recommendation, Graph neural networks

Comments

Popular posts from this blog

𝐉𝐨𝐮𝐫𝐧𝐚𝐥 𝐨𝐟 𝐀𝐭𝐦𝐨𝐬𝐩𝐡𝐞𝐫𝐢𝐜 𝐒𝐜𝐢𝐞𝐧𝐜𝐞 𝐑𝐞𝐬𝐞𝐚𝐫𝐜𝐡 | 𝐕𝐨𝐥𝐮𝐦𝐞 𝟎𝟔 | 𝐈𝐬𝐬𝐮𝐞 𝟎𝟐 | 𝐀𝐩𝐫𝐢𝐥 𝟐𝟎𝟐𝟑

Impact of Polymer Coating on the Flexural Strength and Deflection Characteristics of Fiber-Reinforced Concrete Beams

𝐉𝐨𝐮𝐫𝐧𝐚𝐥 𝐨𝐟 𝐀𝐭𝐦𝐨𝐬𝐩𝐡𝐞𝐫𝐢𝐜 𝐒𝐜𝐢𝐞𝐧𝐜𝐞 𝐑𝐞𝐬𝐞𝐚𝐫𝐜𝐡 | 𝐕𝐨𝐥𝐮𝐦𝐞 𝟎𝟔 | 𝐈𝐬𝐬𝐮𝐞 𝟎𝟑 | 𝐉𝐮𝐥𝐲 𝟐𝟎𝟐𝟑