Mineralogical and Geochemical Assessment of Clay Properties of Edda, Afikpo Sub Basin Nigeria for Possible Use in the Ceramics Industry

Mineralogical and Geochemical Assessment of Clay Properties of Edda, Afikpo Sub Basin Nigeria for Possible Use in the Ceramics Industry


DOI: 

https://doi.org/10.30564/jgr.v3i2.2964

Abstract

Clay samples from selected part of Edda were analyzed to identify the clay mineral types present, their chemical and physical properties with a view to appraising their industrial suitability as ceramic materials. The mineralogical and geochemical analyses were done using the principles of X-Ray diffraction and X-ray fluorescence respectively. A total of seven clay samples were used for the study, other tests such as plasticity, bulk density, shrinkage, loss on ignition (LOI) and water absorption capacity was carried out to determine the amount of water absorbed under specified conditions. The basic industrial properties assessment showed that more than 70% of the clays are fine-grained. The clays exhibited low to moderate plasticity, moderate shrinkage and bulk density, low to moderate values of both loss on ignition and water absorption capacity. The clays are buff to yellowish in colour. The results of x-ray fluorescence revealed that the mean concentration of major oxide in the clays is shown as follows: SiO2 (62.78%), Al2O3 (20.25%), total Fe (6.09%), CaO (0.56%), MgO (3.21%),Na2O (0.47%), K2O, (1.44%) and TiO2 (0.52%).The samples have high silica content, low alumina and low oxide content. The results of x-ray diffraction revealed that kaolinite is the dominant clay mineral with illite and montmorillonite occurring in subordinate amounts, while quartz and feldspar are the non-clay components present. The characteristics of the clays for each parameter were compared with industrial standards.These properties are appropriate for the Afikpo clays to be useful in the manufacturing of ceramics. However, since the silica content of the clays is high further beneficiation is recommended.

Keywords: 

X-ray, Mineral, Liquid limit, Plastic limit, Industrial standard, Atterberg limit

Comments

Popular posts from this blog

Impact of Polymer Coating on the Flexural Strength and Deflection Characteristics of Fiber-Reinforced Concrete Beams

Achieving Sustainable Use and Management of Water Resources for Irrigation in Nigeria

Soil Bunds Effect on Soil Properties under Different Topographies of the Southwest Ethiopia