Data Analytics of an Information System Based on a Markov Decision Process and a Partially Observable Markov Decision Process

Data Analytics of an Information System Based on a Markov Decision Process and a Partially Observable Markov Decision Process

DOI: 

https://doi.org/10.30564/jcsr.v5i1.5434

Abstract

Data analytics of an information system is conducted based on a Markov decision process (MDP) and a partially observable Markov decision process (POMDP) in this paper. Data analytics over a finite planning horizon and an infinite planning horizon for a discounted MDP is performed, respectively. Value iteration (VI), policy iteration (PI), and Q-learning are utilized in the data analytics for a discounted MDP over an infinite planning horizon to evaluate the validity of the MDP model. The optimal policy to minimize the total expected cost of states of the information system is obtained based on the MDP. In the analytics for a discounted POMDP over an infinite planning horizon of the information system, the effects of various parameters on the total expected cost of the information system are studied.

Keywords: 

Predictive modelling, Information system, MDP, POMDP, Cybersecurity, Q-learning

Comments

Popular posts from this blog

𝑱𝒐𝒖𝒓𝒏𝒂𝒍 𝒐𝒇 𝑬𝒏𝒗𝒊𝒓𝒐𝒏𝒎𝒆𝒏𝒕𝒂𝒍 & 𝑬𝒂𝒓𝒕𝒉 𝑺𝒄𝒊𝒆𝒏𝒄𝒆𝒔 | 𝑽𝒐𝒍𝒖𝒎𝒆 02 | 𝑰𝒔𝒔𝒖𝒆 02 | 𝑶𝒄𝒕𝒐𝒃𝒆𝒓 2020

𝗝𝗼𝘂𝗿𝗻𝗮𝗹 𝗼𝗳 𝗘𝗻𝘃𝗶𝗿𝗼𝗻𝗺𝗲𝗻𝘁𝗮𝗹 & 𝗘𝗮𝗿𝘁𝗵 𝗦𝗰𝗶𝗲𝗻𝗰𝗲𝘀 | 𝗩𝗼𝗹𝘂𝗺𝗲 𝟬𝟲 | 𝗜𝘀𝘀𝘂𝗲 𝟬𝟯 | 𝗢𝗰𝘁𝗼𝗯𝗲𝗿 𝟮𝟬𝟮𝟰

𝐉𝐨𝐮𝐫𝐧𝐚𝐥 𝐨𝐟 𝐀𝐭𝐦𝐨𝐬𝐩𝐡𝐞𝐫𝐢𝐜 𝐒𝐜𝐢𝐞𝐧𝐜𝐞 𝐑𝐞𝐬𝐞𝐚𝐫𝐜𝐡 | 𝐕𝐨𝐥𝐮𝐦𝐞 𝟎𝟔 | 𝐈𝐬𝐬𝐮𝐞 𝟎𝟐 | 𝐀𝐩𝐫𝐢𝐥 𝟐𝟎𝟐𝟑