Long Term Spatio-temporal Variations of Seasonal and Decadal Aridity in India

Long Term Spatio-temporal Variations of Seasonal and Decadal Aridity in India


Abstract


A comprehensive analysis of climate data (1958-2018) is carried out at the national scale in India to assess spatiotemporal variation in aridity. The aridity is analyzed using UNEP (United Nations Environment Programme) Aridity Index (AI), which is the ratio between Precipitation (P) and Potential Evapotranspiration (PET). Freely available Terra-Climate database, P and PET variables, offered an unprecedented opportunity for monitoring variations in AI and aridity index anomalies (AIA) at interseasonal and inter-decadal basis. The study also assesses longer term patterns of P and AI anomalies with vegetation anomalies. The results indicate that significant clustered areas with maximum dryness are located at west-central part of India, the state of Maharashtra. Overall, there is a gradual increase in the extent of arid zone during 60-year period and spatially maximum extent of percentage change in aridity area is observed. The change patterns of AI in India are largely driven by the changing patterns of precipitation. The maximum impact of decline in precipitation on AIA was observed during Kharif season frequently, for every 4-5 years during 1972-1992. The pattern repeated in the last few recent years (2013- 2018), the decline in precipitation resulted increased aridity. The study also reveals that the availability and usage of irrigation sources have increased from 2014 to 2018. Thus, despite of less precipitation positive vegetation has been resulted in this period. The findings are important to understand the impacts of climate change on land use pattern, and land and water resource management.

Keywords


Aridity index; Aridity index anomaly; NDVI; Potential evapotranspiration; Precipitation; SPI

Full Text:

PDF


Comments

Popular posts from this blog

Impact of Polymer Coating on the Flexural Strength and Deflection Characteristics of Fiber-Reinforced Concrete Beams

Achieving Sustainable Use and Management of Water Resources for Irrigation in Nigeria

Soil Bunds Effect on Soil Properties under Different Topographies of the Southwest Ethiopia